精品乱码一区内射人妻无码-亚洲中文AⅤ中文字幕在线-免费不卡国产福利在线观看-国产综合无码一区二区色蜜蜜

          上海陸甲自動化科技有限公司

          當前位置:上海陸甲自動化科技有限公司>>產品檢測設備>> 工業(yè)零部件智能視覺檢測設備

          工業(yè)零部件智能視覺檢測設備

          參  考  價:面議
          具體成交價以合同協(xié)議為準

          產品型號

          品牌

          廠商性質其他

          所在地

          更新時間:2022-08-19 17:18:35瀏覽次數:629次

          聯(lián)系我時,請告知來自 智能制造網
          暫無圖片

          工業(yè)零部件智能視覺檢測設備

          工業(yè)零部件檢測設備廠家



          工業(yè)零部件智能視覺檢測設備

          作為國內外包裝智能自動化設備研發(fā)企業(yè),上海陸甲自動化科技有限公司的技術服務為中國制造業(yè)提供了與同步工業(yè)零部件智能視覺檢測設備技術解決方案。工業(yè)零部件智能視覺檢測設備應用于:制藥、食品、飲料、日化、品、電子、電器、化工、汽車工業(yè)及塑料與五金等各大行業(yè)!

          工業(yè)零部件智能視覺檢測設備數字圖像處理技術是一個新興的技術行業(yè),已在自動化系統(tǒng)、汽車零部件檢測和智能識別等領域都有的應用。它已經成為傳統(tǒng)人工檢測速度慢、檢測效率低的重要解決辦法之一。由于實際生產中,工業(yè)零件在細節(jié)方面會有諸多缺陷,因此,有必要選用合適的算法對其進行準確的識別和檢測。本文針對汽車吸能盒背板零件,設計了圖像檢測系統(tǒng)的整體方案,搭建了實驗硬件平臺,并詳細介紹了視覺系統(tǒng)采用的各種器件和照明系統(tǒng)的組成,再進行攝像系統(tǒng)標定,完成了畸變效應的矯正。在獲取矯正后的圖像后,對圖像的預處理、邊緣檢測、零件幾何參數測量等關鍵技術進行了重點研究。在預處理中,首先分析了圖像的噪聲類別,比較了多種濾波算法,找出適合本文圖像的濾波算法。進而,在圖像邊緣檢測中,對比了經典的邊緣檢測算法,為后續(xù)的特征提取提供了基礎。在檢測圖像基本特征時,分別檢測圖像中的圓和直線,并對檢測結果的參數進行了優(yōu)化,提高了圓和直線的檢測效果。在對圖像中的槽進行檢測時,采用了模板匹配算法,對槽的位置進行了準確的識別。在進了了零件尺寸的檢測之后,文中還研究了完好零件、焊點零件和劃痕零件三種情況的分類識別方法。首先,通過邊緣檢測,在保證圖像邊緣清晰、完整的基礎上,利用梯度方向直方圖算法進行特征提取,并采用概率神經網絡和SVM進行分類識別,取得了不錯的分類效果。然而,特征向量維度較高,特征提取信息混疊,以致圖像關鍵信息難以充分利用。文中對梯度方向直方圖算法進行了改進,對梯度方向直方圖特征提取算法進行雙線性插值,得到了更能夠體現(xiàn)細節(jié)特征的特征向量,再用神經網絡和支持向量機進行識別,在提高特征值抗混疊效應的同時,也提高了圖像的分類識別準確率。本課題模塊的實現(xiàn)都是基于Visual C++和MATLAB的,包括視覺系統(tǒng)界面開發(fā)和算法的編寫。本文實現(xiàn)了零件特征的檢測,與不同種類的零件分類識別。文中的研究結果體現(xiàn)了一定的工程價值,同時對圖像測量技術的應用和零件的分類識別提供一定的借鑒意義。

          Inligent visual inspection equipment

          As a well-known packaging inligent automation equipment research and development enterprise at home and abroad, Shanghai Lujia Automation Technology Co., Ltd. provides technical solutions for the Chinese manufacturing industry to synchronize inligent visual inspection equipment for industrial parts. Widely used in: pharmaceutical, food, beverage, daily chemical, health care products, electronics, electrical appliances, chemicals, automotive industry and plastics and hardware industries!

          Inligent visual inspection equipment for industrial components is an emerging technology industry in digital image processing technology. It has been widely used in automation systems, automotive parts inspection and inligent identification. It has become one of the important solutions for slow manual detection and low detection efficiency. Due to the defects in the details of industrial parts in actual production, it is necessary to use an appropriate algorithm to accuray identify and detect them. In this paper, the overall scheme of the image detection system is designed for the back part of the car energy-absorbing box. The experimental hardware platform is built, and the components of the various components and lighting systems used in the vision system are introduced in detail. Then the camera system is calibrated and completed. Correction of distortion effects. After obtaining the corrected image, key technologies such as image preprocessing, edge detection and part geometric parameter measurement were studied. In the preprocessing, the noise class of the image is first analyzed, and various filtering algorithms are compared to find the filtering algorithm suitable for the image. Furthermore, in the image edge detection, the classic edge detection algorithm is compared, which provides the basis for the subsequent feature extraction. When detecting the basic features of the image, the circles and lines in the image are detected separay, and the parameters of the detection result are optimized to improve the detection effect of the circle and the line. When detecting the slot in the image, a template matching algorithm is used to accuray identify the position of the slot. After the inspection of the part size, the classification and identification methods of the intact parts, the solder joint parts and the scratch parts were also studied. Firstly, through the edge detection, on the basis of ensuring the image edge is clear and complete, the gradient direction histogram algorithm is used for feature extraction, and the probabilistic neural network and SVM are used for classification and recognition, and a good classification effect is obtained. However, the feature vector dimension is high, and the feature extraction information is aliased, so that the key information of the image is difficult to fully utilize. In this paper, the gradient direction histogram algorithm is improved, and the gradient direction histogram feature extraction algorithm is bilinearly interpolated. The feature vector which can reflect the detailed features is obtained, and then the neural network and support vector machine are used for recognition. The anti-aliasing effect of the value also improves the accuracy of classification and recognition of images. The implementation of all modules of this topic is based on Visual C++ and MATLAB, including visual system interface development and algorithm writing. This paper realizes the detection of part features and the classification and identification of different types of parts. The research results in this paper reflect a certain engineering value, and provide some reference for the application of image measurement technology and the classification and identification of parts.


          會員登錄

          ×

          請輸入賬號

          請輸入密碼

          =請輸驗證碼

          收藏該商鋪

          X
          該信息已收藏!
          標簽:
          保存成功

          (空格分隔,最多3個,單個標簽最多10個字符)

          常用:

          提示

          X
          您的留言已提交成功!我們將在第一時間回復您~

          以上信息由企業(yè)自行提供,信息內容的真實性、準確性和合法性由相關企業(yè)負責,智能制造網對此不承擔任何保證責任。

          溫馨提示:為規(guī)避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。

          在線留言